Understanding Atari WAM Movies (AWM) and the WAM Player for the Atari XL/XE Computers
      The WAM movie format (Wire Animated Movie) was an idea that I can up with in December of 2005, or possibly a few months earlier.  The idea was to create animation files that would be the simplest, smallest kind of animated movies.  I decided that I would simply draw line segments from their endpoints, and that these endpoints should be only 2 bytes (one for X, one for Y).  Sequences of endpoint pairs would be used to form "polylines", saving bytes as opposed to specifying each line segment separately.  Also, single bytes would be used as "control bytes" to tell the WAM player to start a new polyline, start a new frame, or start the animation over.

      From the beginning, one of my goals was to make animations that were capable of being played on an Atari 800 (or 800XL) computer.  This type of computer, first sold in 1979, is very primitive by today's standards, containing only 64KB of total memory (only about 40KB available to use), no hard drive, very slow floppy drives, and a very slow, simple microprocessor (CPU).  My goal was a frame rate of 12 frames per second, hopefully having enough memory space to play an animation that was 15 to 30 seconds long.  At the same time I was developing the animation player for the Atari, I was also developing two players to use on mainstream PC's, one created with QuickBasic for DOS, and the other created with Visual Basic 3.0 for Windows.  Unlike the Atari player, these PC players can quickly load a large animation and play it at a fast frame rate.  This is because today's mainstream PCs usually have CPU speeds in the Gigahertz (the Atari's is 1.8 Megahertz, 1000 times slower) and disk and memory size much greater than the Atari.  So the PC players I wrote were easily able to pull the endpoint data straight from the hard drive, draw the lines, and display the frames of a typical animation at 24 frames per second or more.

      On the Atari, I quickly found out that I would be limited to animations which were 30KB in size!  Animations had to be loaded into memory before they were played because the floppy disk access was too slow to read from the floppy while the animation was playing.  It was crucial to load the animation into one continuous block of memory and 30KB was the largest block I was able to create.  After constant rewriting and re-tweeking, using both compiled BASIC (TurboBasic) and assembly language, I was able to create a player that could play an animation with 100 line segments in each frame, at a rate of 12 frames per second.  This allowed enough detail for reasonably interesting animations.  However, it turns out that the player only works with Atari XL & XE computers, since programs written in TurboBasic (even compiled) won't run on the original Atari 800.

The WAM File Format
       The Atari WAM movie file (.awm) is a variation of the PC WAM file (.wam), so I'll cover the PC version first.  The file is very simple, consisting of the X,Y coordinate pairs of the endpoints of lines, as well as the "control bytes" mentioned earlier.  The Y-coordinate of an endpoint is always listed first.  Y-coordinates range from 0 to 240, X-coordinates range from 0 to 255.  The player program reads the Y-coordinate first.  If it is a control byte (250 through 255), then the program stops reading and executes the appropriate function (start new line, start new frame, etc.).  If the Y-coordinate is 240 or less, the program reads the next byte (the X-coordinate), and draws a line to these coordinates from the previously read X,Y pair.  Here is a list of the 6 control bytes:

250 (FA)  - Finished Animation - Signals the end of the animation.  Occurs only once, at the very end of the file.

251 (FB) - Flip Background color (and frame finished) - Changes the background color for effects such as lightning.

252 (FC) - Flip Color (line color) - Signals the end of a polyline, and a new color for the next polyline.

253 (FD) - Finished Drawing - Signals the end of a polyline.

254 (FE) - Frame Extended (and finished) - Signals the end of a frame and delays the next frame.  Useful for titles.

255 (FF) - Finshed Frame - Signals the end of a frame.

Let's work through a sample animation file.  Say you're examining a WAM file with an editor which shows the bytes in hexadecimal form (hex editor) and the first 20 bytes look like this:

7D   D4   8C   D2   8C   F1   7E   F2   FD   83   CF   63   74   FD   7D   C3   89   C3   FF   67

The decimal equivalents of these 20 bytes are:

125, 212, 140, 210, 140, 241, 126, 242, 253, 131, 207, 99, 116, 253, 125, 195, 137, 195, 255, and 103

      So, the first point plotted will have a Y-coordinate of 125 and an X-coordinate of 212 (remember, Y is listed first in a WAM file).  A line will then be drawn to the next point, which is 210, 140 (X=210, Y=140).  From there, a line will be drawn to 241,140 and then to 242,126.  Then the player will read 253, which is a "control byte" (FD in hex) which means "Finished Drawing".  So there will be no line segment drawn to 207,131.  A new "polyline" (multiple segments connected end-to-end) will be started at those coordinates.  A single line segment will be drawn to 116,99 before another FD is encountered and another new polyline is started.  Near the end of the list, the player will read 255 (FF), meaning "Finished Frame".  At this time the finished frame (screen picture) will be displayed while the next frame is started.  The 20th number on our list (103) will be the Y-coordinate of the first endpoint in that frame.  The very last number in the whole animation file will always be 250 (FA), meaning "Finished Animation".

      So why do the Y-coordinates only go up to 239 (not 255) and why are they listed first?  Well, six of the possible Y-numbers (250 thru 255) are the control bytes and are interpreted as instructions, not coordinates.  It was appropriate to use Y-numbers to do this, because the Y-length of a PC screen is shorter than the X-length, so the lost resolution would be less noticeable.  239 was set as the maximum Y value, creating 240 possible Y-values (0-239). The total of 240 was used, not 250, because 240 is a nice round number and neatly scalable to higher resolutions, which is done by the PC WAM Players.  Anyway, the Y-coordinates are listed first because a control byte needs to be detected and executed before any more data is read.  In other words, the data is normally read in pairs, but a control byte must be read by itself.

      The PC players can play the WAM files in a number of different resolutions.  Immediately after each X or Y-coordinate coordinate is read, it is multiplied by some constant value, so when the lines are drawn, the size of a figure simply depends on what constant value was used.  When the player is started, the user is asked for the screen resolution to use, and the constant value is calculated from that.  Popular resolutions are 640x480, 640x350, and 320x240.  Self-playing WAM files (DOS .EXE files) are always played at 640x350 resolution (full-screen) and at 18 frames per second.

A note about other 8-bit platforms:

Along with the Atari, I've considered writing a WAM player for other platforms like the Commodore 64 and the Apple IIe.  Both of these use a version of the 6502 CPU, so the machine language portion of the program should be very similar.  However, the CPU in the "vanilla" version of these machines (no add-ons) only runs at 1.0 MHz, compared to 1.8 MHz for the Atari.  Also, neither machine has Atari's 160x96 graphics mode (Commodore's closest is 160x200, and Apple has only 80x48 or 280x192).  These are fatal blows for the WAM player, since Atari's 160x96 graphics and 1.8 MHz CPU speed are just the right combination to allow reasonably detailed animations to play at the minimum acceptable speed of 12 FPS (frames per second).  I would guess, for example, that Commodore's 160x200 screen would take 50% longer to draw a frame (assuming that about half the lines would double in length), and with the CPU being slightly more than half the Atari's speed, frames would take 2.7 times as long to draw.  I've noticed that the Atari maxes out at about 200 bytes per frame for 12 FPS, so the Commodore would only be able to handle about 75 bytes per frame at 12 FPS.  That's fast enough to play a very simple animation like "boxes.awm", but not nearly fast enough to play "car.awm" or "ned.awm" at the minimum speed.  An animation like "balls.awm" (400 bytes per frame) would be out of the question...

The AWM File Format (Atari)
       The Atari format is similar to the standard WAM file.  The control bytes are slightly different.  FA (Finished Animation), FD (Finished Drawing), and FE (Frame Extended) are the same as in WAM files.  However, instead of FF, FC (Frame Completed) signals the end of a frame.  Also, there are no control bytes to change color, since the Atari format being used doesn't allow multiple colors.  As with WAM files, the data is read in pairs with Y-coordinates listed first.  One big difference is that the X- coords range from 0 to 159 and Y-coords range from 0 to 95.  This is because AWM files are always played in GRAPHICS 22 mode (GRAPHICS 6 without text window - 160 x 96 resolution), and the AWM files must have the same resolution as the graphics screen, since the Atari doesn't have the power to modify the coordinates while the animation is played, the way the PC can.  I would have loved to use Atari's highest resolution mode (320 x 192), but it just wasn't possible, given the speed and memory constraints of the Atari.  Modifying the player to double the Y-resolution (GRAPHICS 30 mode, 160 x 192) wouldn't be that difficult, but the performance would definitely suffer and 12 frames per second would only be achieved for the simplest animations (not 100 line segments per frame).  So 160 x 96 resolution made the most sense.

      The other difference is that AWM files start with 6 bytes which are "header bytes".  The first two are both FF, and the last four specify  the starting and ending memory locations where the file will be stored.  These 6 bytes indentify the file as an executable binary file, which it's not, but I have to make TurboBasic think it is, so the file can be loaded with TB's BLOAD (binary load) instruction.  These header bytes are not needed in PC WAM files, since those files don't need to be loaded into memory to be played.  The starting memory locations for the file (header bytes 3 and 4) require a little thought.  I found that 3200 hex (byte 3=00h, byte 4=32 h) works for the largest files (up to 30KB), but they can't be played using the BASIC version of the player (only the compiled version), since TurboBasic itself takes up too much memory to allow it.  If I want to play a file from TurboBasic, I start the file at 5200 hex.  In that case, the  file size is limited to about 21KB.  The ending memory location (header bytes 5 and 6) is calculated by adding the length of the file (not counting the header bytes) to the starting location (bytes 3 and 4).  When the file is loaded into memory by TB's BLOAD instruction, the header bytes are stripped off and the data is read correctly.

A little history of the Atari (AWM) Player
      The Atari Player is written in both compiled Turbo Basic and assembly language.  It resides on a bootable Atari disk which also contains AWM animations.  When the Atari is booted, control goes straight to a screen which lists the available animations and prompts the user to enter the name of the animation which will be played.  Next, the user is asked whether the animation will be played on a dark background (white lines on black, rather than black lines on white).  The user is then asked to enter "number of jiffies", which will determine how fast the animation is played (the frame rate).  A jiffy is 1/60 of a second, so if you wanted, for example, to play an animation at 12 frames per second, you would type "5" for number of jiffies (60 / 12 = 5).  The animation is then loaded and played, repeating each time from the beginning until the user hits BREAK, or reboots the Atari.  Pressing BREAK is convenient, because then the user can enter "R"at the prompt, which takes him back to the menu of available animations.

      The player was originally written in standard Atari Basic.  I knew it would be incredibly slow, but it was a start.  The file "WHAM1.BAS" simply opens an AWM file, pulls the bytes from disk one at a time, and draws lines between them on the screen, using Basic's PLOT and DRAWTO instructions.  It tests the first byte in each pair of bytes to see whether it is a "command byte" or the Y-coordinate of the next endpoint to draw.  It uses the GRAPHICS 22 instruction to erase the screen between frames.  You see the screen being drawn each time, because "page flipping" (explained later) has not yet been implemented.  Its performance is, of course, dismal.  CAR.AWM (124 frames, 28,189 bytes) plays in 4 min, 22 sec. (at normal Atari floppy disk speed).  That's more than 2 sec per frame.  The finished Atari Player, by contrast, plays the same animation in 8.5 sec, more than 12 frames per second and a 30 times speed increase!


In the second version of the player (WHAM2.BAS), I loaded the entire animation file into memory using the POKE instruction, starting at a safe location (4000 hex).  This worked for small animations,  but files over 10KB were soon overwriting system routines and causing the Atari to crash.  Later I found that I could dimension one large variable to reserve up to 30KB for the animation, and keep it safe from anything the operating system was doing.  Anyway, POKEing the animation into memory one byte at a time was terribly slow, so I later discovered how to use TurboBasic's BLOAD routine to read the file into memory at machine language speeds.


You might be wondering at this point, how I was producing AWM movie files (or PC WAM files) in the first place.  The first movies were simply static 2D figures (boxes, etc) entered by hand with a hex editor.  This was very tedious, and I soon found a better source.  I had examined some animation files produced by the old Amiga 3D program, Forms-In-Flight.  I soon realized that these files were, like my files, collections of line endpoints (which allowed them to be sent to a plotter and also allowed the user to play them at several different resolutions).  In these files, X and Y coords were each 2 bytes, X-coords ranging from 0 to 10,240 and Y-coords ranging from 0 to 6400.  So I wrote a converter (FIF2WAM) in QuickBasic and later in Visual Basic, to convert Amiga Forms-In-Flight files to WAM and AWM files.  This gave me an ample supply of test animations, and for a while was satisfactory.  However, the converted files were larger than they needed to be (many times the same line was drawn over itself) and more importantly, it was difficult to produce interesting animations with Forms-In-Flight.  It was then I started work on WAMTrace, a Visual Basic program that I currently use to create WAM and AWM movies.  A set of BMP frames is created with a 2D or 3D animation program.  When the WHAMTrace program is run, these BMP pictures can be made to appear in the background of a window by the use of a slider bar.  The user can then trace lines on top of the BMP pictures, one frame at a time, and the data is automatically entered into a WAM file, playable on the PC.  That WAM file can then be converted to an Atari AWM file (lower resolution) with the Visual Basic program WAM2AWM.  One drawback of WAM and AWM files produced with WAMTrace is that the lines are "shakey".  This is partially because the tracing by a human is not perfect, and partially because some accuracy is lost when the file is scaled down from a 640 x 480 tracing to a 255 x 240 (or 160 x 96) file.  Another disadvantage is that the tracing is very tedious, and currently there is no easy way to stop a tracing in the middle, and work on it again later (groups of frames have to be joined together with a hex editor).  The big advantage of WAMTrace is that the BMP files used can come from anywhere, and sections of live video can be traced as easily as 3D or 2D animations.  Anyway, some feel that shaky animations can look "charming" and that tedious work is good for the soul, so this is the current way WAM and AWM movies are created.


For the 3rd version of the player (WHAM3A.BAS), I created the first machine language routine, which would clear the screen between frames.  I had been doing that with the GRAPHICS instruction, but I knew I could create something faster with machine language.  The Basic program first determined where in memory the screen data was stored.  Then the ML routine simply wrote zeros to all those  memory locations.  The routine, once tested with the Atari Assembler-Editor cartridge, was stored in DATA statements and read and POKEd into a safe area of memory.  With the next player, WHAM3B.BAS, the machine language screen clear routine was saved as a character string (CLEAR$) instead of as DATA statements.  This meant that I no longer had to find a place in memory to store the routine.  I thank Mark Chasin's Atari ML book for showing me the power of storing ML routines as character strings.  I would use this technique extensively later on...


WHAM4.BAS took a different approach to screen clearing.  Believe it or not, at this point I was still hoping to display AWM animations in GRAPHICS 24 mode (320 x 192) and I feared that the machine language screen clear routine would take too long.  So I modified the player to draw a frame normally, and then to draw the same lines in the background color to erase the frame.  I had anticipated that I would ultimately use machine language drawing routines, and that drawing in the background color would erase faster than my CLEAR$ routine.  I was soon to be proven wrong, especially in GRAPHICS 24 mode.


WHAM41.BAS added "page flipping" to the player in GRAPHICS 24, but it didn't work.  It was then I resigned myself to run the player in the lower resolution mode (WHAM41S.BAS - GRAPHICS 22) and stay with that mode from then on...

Explanation of "Page Flipping"
Page flipping means that the program can draw lines on a screen that is not being displayed, while displaying a previously drawn screen.  When a drawing is finished, the displayed screen and the "hidden" screen are swapped, and the newly hidden screen is cleared and drawn on again.  This prevents the person watching the animation from seeing any lines being drawn, or any "flicker".  When it's time, the new frame just magically appears in the place of the old one.  The Atari can do this sort of thing because it supports multiple screens in different memory locations, and it can display them simply by moving the "screen pointer".  Another "pointer" tells the Atari where in memory to draw its dots and lines.  Anyway, page flipping was also achieved in  the the QuickBasic WHAM player (for PC), by using QuickBasic's PCOPY instruction.  I still haven't found a way to implement page flipping in the Visual Basic player, so that player still "flickers" somewhat.

      WHAM5.BAS was identical to WHAM41S.BAS, except that it corrected the screen colors to be black-on-white (color registers 0 and 4 are used in GRAPHICS 22, instead of registers 1 and 2 used in GRAPHICS 24).

      WHAMLO.BAS and WHAMHI.BAS used GRAPHICS 22 (160 x  96) and GRAPHICS 30 (160 x 192) modes, respectively.  They improved on WHAM5 in that now a file name could be entered, and a string variable (B$) was dimensioned to create a space for the animation data, which was then read and POKE'd in.  B$ was limited to 32KB for WHAMLO and 26KB for WHAMHI.  WHAMCLR.BAS brought the CLEAR$ routine back to the player and got rid of the background-draw-erase routine forever.  WHAMCLS. BAS cut down the memory area cleared to speed up the routine a little. From here on I stayed with GRAPHICS 22.

      At this point, I knew I had gone as far as I could with Basic alone.  The line drawing, conditional testing, and looping speed would never be fast enough in Basic to play 12 FPS animations, even after the player was compiled.  It was time to get serious about ML...

      I wrote a simple ML routine that would plot points on the screen by locating their memory locations and writing to them.  It was a little tricky, because in GRAPHICS 22 (as well as in GRAPHICS 30) there is one byte for each 8 pixels in a line (all pixels are just 2 color, 1 or 0 ).  Fortunately, the screen was 20 bytes across (160 pixels) so I could just multiply the Y-coord by 20 in ML (not too hard) to find the correct line.  I was then able to use the X-coord to locate the correct memory location (of the 20 for that line) and contruct a byte that was all zeros except for a "1" in the correct position.  I then ORed that byte with the existing value in the memory location (I used OR to avoid erasing any pixels from previously drawn lines).

      Somewhere around this time I discovered Bresenham's line drawing algorthim.  I think I read it in an article about how Jack Bresenham was trying to control a plotter, working for IBM back in 1962.  Anyway, it's a nice "incremental" method of drawing lines, which can be done with integer math in ML, with very simple calculations.  It seemed perfect for my player, but if I implemented it, I needed to determine whether it was faster than accessing the Atari operating system drawing routines from ML, which seemed much easier to do.  But although I followed the instructions of Chasin and others, I was never able to get the operating system routines to work from ML.  So it was clearly up to me to write my own drawing routines using Bresenham's Algorithm...

      I found that the Bresenham line-drawing method required that I specify 8 possible cases of line direction.  We'll call the change in X for a line (X2-X1) "DX" and the change in Y (Y2-Y1) "DY".  On the Atari screen, "down" means increasing Y-coordinate, "right" means increasing X-coordinate.

The cases are:

Right Down Gentle (RDG) - DX and DY both positive, DX > DY

Right Down Steep (RDS) - DX and DY both positive, DY > DX

Right Up Gentle (RUG) - DX positive and DY negative, DX > DY

Right Up Steep (RUS) - DX positive and DY negative, DY > DX

Left Down Gentle (LDG) - DX negative and DY positive, DX > DY

Left Down Steep (LDS) - DX negative and DY positive, DY > DX

Left Up Gentle (LUG) - DX and DY both negative, DX > DY

Left Up Steep (LUS) - DX and DY both negative, DY > DX

      I found that it made sense to separate these cases into 8 separate machines language routines.  If I'd created a generalized routine for all 8 cases, it would have taken much less space, but it would have been much slower.  With a generalized routine, I would have had to check for the case type every time I plotted a pixel, not good because minimizing the pixel-plotting loop renders the greatest overall speed increase.  Also, I was doing my best to stay away from negative numbers (necessary in a generalized routine) since I was doing single-byte arithmetic.  So I settled on 8 ML drawing routines.  I ultimately stored them as character strings in the Basic player, each string about 70 bytes long.  Through continual tweeking and optimizing, I got these routines to the point where I would now be hard-pressed to improve upon them.  I then added an ML routine in the player which would select the proper drawing routine from the two most recent pairs of coordinates read.  I also set up an "address table"in the Basic part of the player, so the main ML routine would know where to jump in memory to access the appropriate case drawing routine.

Languages
     Sometime during the time when I was going from the Basic drawing routines to ML drawing routines,  I started to use the DataSoft Basic Compiler to make faster, executable versions of the player.  The problem I ultimately found with DataSoft was that it would not compile programs with subscripted variables, unacceptable because I needed those variables for my "address table" to access case drawing routines.  I also tried writing the player in the ACTION language, which had pretty good speed for non-drawing functions (ACTION's drawing routines weren't any faster than Basic's).  However, ACTION wouldn't allow me to reserve a memory space for animations that was any larger than 8KB, so it was out.  Ultimately I discovered TurboBasic and TurboBasic Compiler on the Web, and they became my choice for the Atari player.  The only downside is that the player could now only be used on the XL/XE series of Ataris, not on the original Atari 800...

Final Touches

     At this point (sometime in July 2007) I had finally optimized the line-drawing routines so that it took less than 100 machine cycles per pixel to draw a line.  What was left was to incorporate the entire frame-drawing section into one ML program, add a nice interface to the Basic front-end of the player, and to add a timing mechanism so that all frames, regardless of complexity, were played at the same rate.  All this time, I managed to keep finding page 0 memory addresses I could use that were safe from the operating system (I ended up with 21 page 0 addresses).  Also, I originally tried to increase speed by not replotting (locating) the start of every segment on a polyline.  I tried instead just to use the final memory location from the previous segment as a starting point.  However, the "rounding error" was too great and animated figures looked like the drawings of a 2-year-old.  So I resigned myself to doing a new plot at the start of each line segment, and the figures looked fine.

      The Basic front-end directory lister and filename prompt was added, and constant timing was remarkably easy to achieve in Basic.  Between frames I just PEEKed memory location 20 (14h), which is the smallest of the three digits of Atari's real-time clock.  The values are in jiffies (60ths of a second), so the jiffy value inputted by the user could simply be compared to the time elapsed since the previous frame. As I mentioned earlier, the AWM animations were modified by adding 6 bytes at the beginning of the file, containing the starting and ending memory addresses of where the file would be stored.  This allowed me to use TB's BLOAD instruction to rapidly read the animation file and store it in memory.

      All that was now left was to integrate the frame-drawing section and the screen-clear routine into one big ML routine, and adapt the Turbo Basic player to call the routine at the proper time.  I avoided converting the entire play loop into ML because it wouldn't have allowed the user to gracefully exit the animation (with the <BREAK> key) and quickly load another one.  The Atari would have had to be rebooted after every animation.  Anyway, the Turbo Basic Player was compiled and renamed AUTORUN.CTB, so that it would run automatically when the disk was booted.  Similarly, the Turbo Basic Runtime Module, RUNTIME.COM, was renamed AUTORUN.SYS.  The ML Frame routine, FRAME.BIN, was included on the disk also, as well as several AWM animation files, which would appear in the opening menu when the disk was booted (thanks to Turbo Basic's DIR instruction).

Update 10/09 - FRAME.BIN and WHAM.BAS have now been revised to handle the FE control code.  FRAME.BIN resides on Page 6 of memory (a "safe" area), limited to the area from $600 to $6E7 (232 bytes).  This is because 2 arrays use up the other 24 bytes of Page 6 memory.  

Structure of the Atari AWM Player
      Now that we've covered the origins and history of the AWM Player, let's go into the details of how it works.  The player is really made up of three parts:

1) The compiled TurboBASIC WHAM player program, WHAM.CTB (compiled from WHAM.BAS), which has been renamed AUTORUN.CTB on the disk so that it will run when the Atari is booted.

2)  FRAME.BIN, the machine language routine to create the animation frames (by drawing lines from the endpoint data).  FRAME.BIN is called from WHAM.CTB.

3)  The eight invididual line-drawing routines (RUG$, RUS$, RDG$, RDS$, LUG$, LUS$, LDG$, and LDS$) that are stored as character strings in WHAM.CTB.  They are called from FRAME.BIN.


In addition to AUTORUN.CTB and FRAME.BIN, the WHAM player disk contains the TurboBASIC runtime module, RUNTIME.COM, which has been renamed AUTORUN.SYS, so that it will run when the Atari is booted,  The disk also contains the standard ATARIDOS files DOS.SYS and DUP.SYS, as well as several AWM files (animations).  I believe the easiest thing is to go through the whole process of playing an animation, following the program execution as it jumps from BASIC to machine language and back, rather than trying to explain the three parts of the program individually.

So, let's start to examine WHAM.BAS, the uncompiled version of WHAM.CTB:

10 REM WHAM12.BAS

20 REM WHAM PLAYER WITH FULL FRAME

30 REM ML DRAW ROUTINES

40 DIM AD(8)

50 DIM RDG$(59), RDS$(59)

60 DIM RUG$(59), RUS$(59)

70 DIM LDG$(64), LDS$(64)

80 DIM LUG$(64), LUS$(64)

90 DIM FILE$(20), DAT$(30000)

100 DIM F$(15), BG$(3)


Lines 40 though 100 are DIM statements, making room in memory for data and machine language code.  On line 40, AD is an array which will hold the starting addresses of the 8 line-drawing routines.  Lines 50-80 save space for the 8 routines themselves.  You may notice that the 8 routines are not all the same length.  The "R" routines (RDG$, RDS$, etc) which draw left-to-right (X increasing), are 5 bytes shorter than the "L" routines (LDG$, LSD$, etc).  On line 90, FILE$ saves space for the input filename, which includes the drive spec, "D1:".  DAT$ is the 30KB space that is reserved for the animation itself (if you run WHAM.BAS directly from TurboBASIC, without compiling, DAT$ needs to be reduced to about 20KB, or the Atari will run out of memory - the TurboBASIC language takes up 8 to 10KB).  On line 100, F$ is another variable for the input filename, this time without the "D1:".  BG$ is a character variable to hold the "YES" or "NO" answer concerning whether to draw the background in black.

110 REM 

120 REM RIGHT, DOWN, GENTLE

130 RDG$="jkdsfl$#$#(fl5-fdk;vbk;r42904f,mg.cvsojsedroqw*()#+_@......."
140 AD(0)=ADR(RDG$)

150 REM RIGHT, DOWN, STEEP

160 RDS$="kleortii0324809dfjrwejfglsdf...."

170     :

180     :

190

  :

  :

420 AD(7)=ADR(LUS$)


On line 130, the first machine language line-drawing routine, RDG$, is defined as a long string of printable characters, each one representing a byte of the machine language routine (the string shown is just for illustration purposes - to see the actual string you must view it on the Atari, as many of the characters are used only on the Atari).  The string was created by first assembling the machine code (from the assembly language program) with the Atari Assembler/Editor Cartridge and storing it as a BIN file.  Then the following little BASIC program (STRING.BAS) was run:

10 REM STRING.BAS

20 BLOAD "D1:RDG12.BIN"

30 FOR J = 0 TO 69

40    PRINT CHR$( PEEK ( 1536 + J ) ) ;

50 NEXT J 

60 END


Line 20 loads the binary file into memory, starting with location 1536 ($600).  The file name will change as all 8 routines are converted to strings, one by one ( version 12 of the line-drawing routines is used with WHAM12.BAS ).  Lines 30 through 50 loop through the memory locations ( page 6 of memory) and print out a character for each byte.  70 was selected as a number of character to print because it is larger than any of the string lengths.  The extra 6 or 11 null characters were simply deleted after the string was printed.  Then a line number and quotation marks were added, and the whole group of characters was copied and pasted into WHAM.BAS.       


Character strings are a well-known way of storing Atari assembly language routines, popular because BASIC automatically finds a safe place in memory to store the routine without the user having to worry about it  The limitation is that the routine has to be relocatable code, meaning that no instructions such as JMP or JSR, which jump to specific memory locations, must be included in the code.  Fortunately, our routines contain only relative branches such as BEQ, and one indirect jump, JMP(), at the end of each of the 8 routines.


Let's return now to WHAM.BAS.  Line 140 defines the first element in the AD array as the starting memory location of the RDG$ character string.  Therefore, it is also the starting location of the memory area where the RDG line-drawing routine will be stored.  So, the 8 elements of the AD array will be used to store the starting locations of the 8 routines.  The main routine, FRAME.BIN, itself stored on Page 6 of memory, will use the elements of the AD array to jump to the 8 routines.

The instructions in lines 130 and 140 are repeated 7 more times up to line 420, defining the character strings for and starting locations of RDS (Right-Down-Steep) through LUS (Left-Up-Steep).

430 REM

440 REM SET UP ADDRESS TABLE AT $6E8

450 FOR J=0 TO 7

460 ML1=INT(AD(J)/256)

470 ML0=AD(J)-ML1*256

480 POKE 1768+J*2, ML0

490 POKE 1769+J*2, ML1

500 NEXT J

One at a time, the starting address of each line-drawing routine is broken down into two bytes, and the bytes are stored in adjacent memory addresses.  AD(0) is stored in addresses 1768 and 1769 ($6E8 and $6E9), AD(1) is stored in addresses 1770 and 1771 ($6EA and $6EB), and so on up to address 1783 ($6F7).  These will then be used by FRAME.BIN to access the line-drawing routines.

510 REM

520 REM SET UP Z-TABLE AT $6F8

530 Z=128

540 FOR K=0 TO 7

550 POKE 1784+K,Z

560 Z=Z/2

570 NEXT K

This section sets up a table of 8 values: 128, 64, 32, 16, 8, 4, 2, and 1.  The binary equivalents of these values are:

128
10000000

64
01000000

32
00100000

16
00010000

8
00001000

4
00000100

2
00000010

1
00000001


These numbers will be used to draw lines!  The 8 line-drawing routines draw lines by lighting the individual pixels in the line.  Since the graphics mode being used, GRAPHICS 22 (GRAPHICS 6 without a text area), has just 2 colors, each pixel has just one bit of screen memory assigned to it.  If the bit is set to 1, the pixel will "turn on" (display the drawing color) and if the bit is 0, the pixel will "turn off" (display the background color).  Of course, individual bits can't be stored by the Atari, so in GRAPHICS 22, a set of 8 consecutive pixels (in a horizontal row) has one byte of screen memory.  When it's time for one of the drawing routines to light a pixel, one of the 8 bytes in the table above is used in the appropriate memory address.  It actually ORed with the byte already in that address, so that none of the 1's already there will be replaced by 0's (which would erase pixels on the screen which had been drawn previously).  

This table of values is created in BASIC and stored in memory locations 1784 through 1791 ($6F8 through $6FF) when the player is first started, so that the values don't have to be calculated while the animation is playing, using up valuable CPU time.

580 REM PLACE THE CASE ROUTINE RETURN

590 REM ADDRESS INTO "BACK" ($3F,$40)

600 REM THAT ADDRESS IS NOW $6DC

610 BACK=1756

620 B1=INT(BACK/256):B0=BACK-(B1*256)

630 POKE 63,B0:POKE 64,B1


When the player is running, the FRAME.BIN machine language routine will call one of the 8 line routines to draw a line.  When that routine is done, it needs return control to FRAME.BIN at a pre-determined memory location.  The group of BASIC statements above stores that memory location (1756 or $6DC) as two bytes in locations 63 and 64 ($3F and $40).  It can then be used by each line-drawing routine in an indirect jump (JMP()) back to FRAME.BIN.

640 REM 

650 BLOAD "D1:FRAME.BIN"

660 ? "DIRECTORY OF ATARI WHAM MOVIES"

670 ? "             (AWM)"

680 ? 

690 DIR "D1:*.AWM"

700 ? 

710 ? "TYPE THE NAME OF A MOVIE FILE TO PLAY"

720 ? "  (IT'S NOT NECESSARY TO TYPE .AWM)"

730 PRINT 

740 ? "    WHEN FINISHED, PRESS <BREAK>"

750 ? "     TO SELECT ANOTHER, PRESS R"

760 ? 


Line 650 above does a binary load of FRAME.BIN from the Atari disk drive, storing it starting in memory location $600.  A title is printed on the Atari screen, and TurboBASIC's DIR command is used to display a list of animations (.AWM files) available on the disk.  Then the user is given further instructions.

770 PRINT "FILE";:INPUT F$

780 FILE$="D1:":FILE$(4)=F$

790 IF INSTR(FILE$,".AWM")<>0 THEN 810

800 FILE$(LEN(FILE$)+1)=".AWM"

810 ? "DARK BACKGROUND(Y OR N)";:INPUT BG$

820 ? "JIFFIES PER FRAME";:INPUT T

830 PRINT "LOADING DATA..."

840 BLOAD FILE$

850 OPEN #1,4,0,FILE$

860 GET #1,N:GET #1,N

870 GET #1,S0:GET #1,S1

880 BASE=S1*256+S0

890 CLOSE #1


This group of BASIC commands prompts the user for the name of the animation to play, then asks whether the user wants a dark background (white lines on a black background rather than black lines on a white background) and asks the speed at which to play each frame of the animation, measured in "jiffies".  A "jiffy" is 1/60 of a second, so if the user wanted to play the animation at 12 frames per second, 5 jiffies would be specified.


Then the animation file is loaded with the BLOAD command.  The BLOAD command was designed in TurboBASIC to load assembly language routines into memory.  The file's first two bytes must be FFFF.  The next two must be the starting memory location where the file is stored, lower byte listed first.  The next two must be the ending memory location of the file, lower byte listed first.  The main file follows these 6 "header bytes".  I found that BLOAD is the fastest way to load an animation into memory at high speed.  BLOAD doesn't care if the loaded file is a machine language routine or animation data, as long as the 6 header bytes are present.


So it's easy to add FFFF to the beginning of the AWM file, but how do you determine the starting memory location?  If you recall, we used DIM DAT$(30000) to reserve a 30KB section of memory for animation data.  If we compile a version of the player which prints out ADR(DAT$), we find that the starting address is 12798, or $31FE.  Therefore, I construct my AWM files with a starting address of $3200.  I guess there's no guarantee that this location would work with different Atari machines, different operating systems, etc. but it's worked for all my animations so far.  The last two header bytes are found simply by adding the size of the animation data to the starting address and subtracting 1.  To summarize, an AWM file that had 12,800 bytes (3200 hex) of data would begin like this:

FFFF 0032 FF63

with the starting address being $3200 (12800) and the ending address being $63FF (25599).

Getting back to our BASIC listing:

840 BLOAD FILE$

850 OPEN #1,4,0,FILE$

860 GET #1,N:GET #1,N

870 GET #1,S0:GET #1,S1

880 BASE=S1*256+S0

890 CLOSE #1

After we BLOAD the file, we open it, and start reading bytes.  In line 860, the first two bytes (FF) are read and thrown away.  The next two bytes are stored as BASE, which is our starting address for the data.

900 REM 

910 REM SET UP 2 SCREENS

920 GRAPHICS 22

930 DL1=PEEK(560)+PEEK(561)*256

940 SC1L=PEEK(DL1+4)

950 SC1H=PEEK(DL1+5)

960 POKE 106,PEEK(106)-16

970 GRAPHICS 22

980 DL2=PEEK(560)+PEEK(561)*256

990 SC2L=PEEK(DL2+4)

1000 SC2H=PEEK(DL2+5)


The next instructions are pretty much standard for any Atari BASIC program that does page-flipping.  We'll set up two areas in memory for GRAPHICS 22 screens, and then store their starting locations for future use.  Line 920 sets up the first GRAPHICS 22 screen.  Line 930 finds the starting location of Atari's "Display List" for that screen.  We won't say much now about the Display List now except that bytes 5 and 6 of it contain the starting location of our GRAPHICS 22 screen.  So, lines 940 and 950 save those bytes as SC1L and SC1H (screen 1 low and high bytes).


Line 960 is very important.  Atari memory location 106 is called RAMTOP and it represents the total number of pages (256 byte sections) of free memory that are available.  By subtracting 16 from that value and restoring it in location 106, we fool the Atari into thinking that it has 4KB less memory than it really does (16 * 256 = 4KB).  That way the Atari will allocate 4KB more memory so that we can set up a second GRAPHICS 22 screen (as we do in line 970).  Lines 980-1000 store the starting memory location of the second screen.  Now we have two GRAPHICS 22 screen memory areas to used, and we will be able to execute "page flipping" by drawing on one screen area while we're displaying the other.

Note:  Even though GRAPHICS 22 screens are only about 1920 bytes in size, I have to reserve 16 pages (4KB) for the second screen to make page-flipping work properly.  It turns out that this is because of the way BASIC reserves memory for GRAPHICS 22 screens.  It starts the first screen at 47072 ($B7E0), which is unfortunate.  When you reserve 8 more pages (2KB) for a second screen, the screen starts at 45024 ($AFE0), which means the screen will cross a 4K-boundary at $AFFF.  Programmers are warned to keep graphics screens from crossing 4K boundaries, which cause "garbage" on the screens for some reason.  Reserving a full 4KB (and wasting almost 2KB) seems the only way to keep the second screen away from $AFFF.  I can't seem to get the Atari to put the first GRAPHICS 22 screen anywhere but 47072, and I've tried all sorts of things (changing the number of pages subtracted from location 106, poking values into locations 144, 145 and 741, 742, etc) to get the second screen around the 4KB boundary, but no luck.  Ultimately, I'm stuck with reserving 4KB and wasting 2KB...  

1010 REM SET EXTEND BYTE TO ZERO

1015 POKE 230,0 


The "extend byte" (location 230 or $E6) is used to hold the delay value that's read when an FE (Frame Extend) command is encounter in the AWM file.  Here we initialize its value so that no frames are delayed accidentally.

1020 COLOR 1

1030 IF BG$="Y" OR BG$="YES" THEN 1060

1040 SETCOLOR 0,0,0:SETCOLOR 4,0,14

1050 GOTO 1070

1060 SETCOLOR 0,0,14:SETCOLOR 4,0,0


This section sets line and background colors to black and white respectively, which are reversed if the user answered "YES" to the "DARK BACKGROUND?" prompt earlier.  Color #1 will be used from drawing, which is color register 0 in GRAPHICS 22 mode.  Line 1040 sets register 0 to color black and luminance 0.  It sets register 4 (the background) to color 0 and luminance 14 (maximum), which produces a white color for the background.  Line 1060 does the opposite, setting register 0 to white and register 4 to black.

1070 REM POKE DATA PTR INTO $E9 AND $EA

1080 DP=BASE

1090 DP1=INT(DP/256):DP0=DP-(DP1*256)

1100 POKE 231,DP0:POKE 232,DP1

1110 POKE 233,DP0:POKE 234,DP1


We got the number for BASE, the starting address of the data, on line 880.  Now we separate it into high and low bytes, and store those bytes in two locations.  The first location is 231, 232 (E7, E8) which is called BASE0, BASE1 and is a permanent record of where the data starts.  The second location is 233, 234 (E9, EA) which is called DATAPT0, DATAPT1 (in FRAME.BIN) and is pointer to the next data byte to be read by FRAME.BIN.

1120 REM 

1130 REM ANIMATION LOOP

1140 REM 

1150 REM 

1160 REM SCREEN 1

1170 POKE 20,0

1180 POKE 88,SC1L:POKE 89,SC1H

1190 REM ERASE & DRAW FRAME

1200 A=USR(1536)

1210 REM SHOW

1220 POKE DL2+4,SC1L:POKE DL2+5,SC1H

1230 IF PEEK(20)<T+3*PEEK(207) THEN 1230

1235 POKE 230,0


Now we get to the meat of the player, the Main Animation Loop.  Earlier we set up two screen areas.  Now we'll be erasing and drawing on one while we display the other.  We'll start with Screen 1.  Line 1170 initializes Atari's clock.  It will be used as a timer to make sure that each frame lasts the same number of "jiffies" (60ths of a second), the value T that was entered by the user.  Take a look ahead at line 1230.  First, we'll examine a simpler version of that line:

1230 IF PEEK(20)<T THEN 1230


We're checking the clock again, and the program will stay on this line until T 60ths of a second have passed since line 1170.  For example, if the user had entered 3 for "number of jiffies", then the program will stay on line 1230 until 3/60ths (1/20th) of a second has passed.

Now let's look at line 1230 as it actually is:

1230 IF PEEK(20)<T+3*PEEK(230) THEN 1230


An additional factor has been added.  Location 230 ($E6) is called (in FRAME.BIN) "XTND" for "extend value".  When FRAME.BIN encounters an FE code (meaning extend or delay the previous frame) it reads the number immediately following the FE.  That number is then put into location 230 and when control is returned to the BASIC program (WHAM.CTB), line 1230 is executed and the frame is delayed by 3 times the value of location 230.  The number 3 was chosen as a multiplier to mimic the delay which would occur in the PC version of the animations.  In PC WAM animations, the number after the FE represents the number of frames delayed (in 18ths of a second, since PC animations are played at 18 FPS).  So 3/60ths of a second is closest to 1/18th.  

Anyway, following line 1230 is:  

1235 POKE 230,0


We're simply initializing the extend value again.  Once it's been used for a frame, we have to make sure that it disappears until the next FE command is encountered.


Okay, now that we've covered the first and last lines of the section, let's look at the middle:

1180 POKE 88,SC1L:POKE 89,SC1H

1190 REM ERASE & DRAW FRAME

1200 A=USR(1536)

1210 REM SHOW

1220 POKE DL2+4,SC1L:POKE DL2+5,SC1H


Atari locations 88 and 89 hold the starting address of the screen which will be used for drawing.  On line 1180, we store the starting address of SCREEN 1 in those locations.  Line 1200 transfers control to FRAME.BIN, starting at location 1536 ($600).  Before we discuss FRAME.BIN, let's finish with line 1220.  It is the line which displays the finished frame, by POKEing SCREEN1's starting address into the 4th and 5th bytes of Atari's display list.  These locations determine which memory area is being SHOWN on the computer screen, as opposed to locations 88 and 89, which determine which memory area is being DRAWN ON.

Finishing Up BASIC

I know I promised that we'd get to FRAME.BIN next, but let's finish up the last little bit of WHAM.CTB, since it's just a duplication of what's come before:

1240 REM 

1250 REM SCREEN 2

1260 POKE 20,0

1270 POKE 88,SC2L:POKE 89,SC2H

1280 REM ERASE & DRAW FRAME

1290 A=USR(1536)

1300 REM SHOW

1310 POKE DL2+4,SC2L:POKE DL2+5,SC2H

1320 IF PEEK(20)<T+3*PEEK(230) THEN 1320

1330 REM 

1340 GOTO 1130


This section just does the same thing for SCREEN2 as the previous section did for SCREEN1.  It sets the timer, finds the start of SCREEN2, and executes FRAME.BIN, the erase-and-draw routine.  All this time, SCREEN1 is being displayed, so the viewer sees not lines being drawn or even any flicker.  In line 1310, SCREEN2 is displayed, and line 1320 adds any necessary delay.  Line 1340 takes us back to the start of the animation loop, so we can do it all again.


Okay, now we'll go through the machine language listing of the frame-drawing routine, FRAME.BIN.  As I explain its execution sequence, I'll be jumping around a bit, so the line numbers may seem out of sequence.  FRAME.BIN contains 3 subroutines – DATLOAD (lines 590-640), EXTEND (lines 660-690), and RESTART (lines 710-770).  Also, I've listed the entire FRAME.BIN source code at the end of this document, for clarity.

FRAME.BIN
0080 ;FRAME12.SRC

0090 ;

0100 ;EQUATES

0110 X1=$CB;     
203

0120 Y1=$CC;     
204

0130 X2=$CD;     
205

0140 Y2=$CE;     
206

0150 TOP=$CF;      
207

0160 DX=$D0;     
208

0170 DY=$D1;     
209

0180 PIXZ=$DB;   
219

0190 PIXLO=$DC;  
220

0200 PIXHI=$DD;  
221

0210 YX4LO=$DE;  222

0220 YX4HI=$DF;  
223

0230 JUMP0=$3D;   61

0240 JUMP1=$3E;   62

0250 BACK0=$3F;   63

0260 BACK1=$40;   64

0270 XTND=$E6;    
230

0280 BASE0=$E7;  
231

0290 BASE1=$E8;  
232

0300 DATPT0=$E9; 233

0310 DATPT1=$EA; 234

0320 TIMER=$EB;  
235

0330 ;

This is a list of the 22 variables I use in FRAME.BIN, and in the 8 line routines.  They are all Page 0 locations, which saves save time (and space) by allowing the use smaller ML (machine language) instructions.  It was quite a chore to find 22 Page 0 addresses that weren't being used by the Atari operating system, but it was worthwhile nevertheless.

0340  *=$600

0350  PLA

0360  LDY #0

0370 ;

0380 ;    CLEAR THE SCREEN

0390  LDA 89

0400  STA PIXHI

0410  CLC

0420  ADC #8

0430  STA TOP

0440  LDA 88

0450  STA PIXLO

0460 SLOOP LDA #0

0470 CLOOP STA (PIXLO),Y

0480  INY

0490  BNE CLOOP

0500  INC PIXHI

0510  LDA PIXHI

0520  CMP TOP

0530  BNE SLOOP

0540  JMP NEWDRAW


Line 340 identifies that the routine starts at location 600.  Line 350 is the standard instruction at the start of every ML routine coming from BASIC, clearing the memory "stack" by throwing away the stack's top byte (the return address to get back to BASIC, which is no longer needed).   Line 360 clears the Y-register so that it can be used in the upcoming loop.


Now we come to the clear routine itself.  8 pages (2KB) of zeros will be written to the screen area, before we can start drawing.  Lines 390 and 400 store the high byte of the screen's starting address (location 89) into PIXHI, the high byte of our pixel counter.  Lines 410 through 430 add 8 pages to PIXHI and store this number into TOP, which will tell us when we're done clearing.  Then the screen address low byte is recovered from location 88 and stored in PIXLO.


Now we can start our loop.  Zero is put into the accumulator, and in line 470, it is stored in consecutive memory locations starting with PIXHI, PIXLO.  The locations are incremented using the Y-register.  In line 490, if Y=0 then PIXHI is incremented and compared to the TOP value to see if the clearing is complete.  PIXLO is never incremented in this routine - it doesn't need to be because the Y-register takes care of all the single-byte counting.  I'd originally used PIXLO to do that, but it took an extra byte (INC PIXLO is 3 bytes and INY is only 2) and also required that I clear 9 pages (420 ADC #9) instead of 8.  The reason for that?  I'll leave it as an "exercise for the reader".  When the clearing is done (PIXHI=TOP) the routine jumps ahead to NEWDRAW.

0820 NEWDRAW

0830  JSR DATLOAD

0840  STA Y1

0850  JSR DATLOAD

0860  STA X1    


This little section simply uses the DATLOAD subroutine to save the next two bytes in the AWM file as Y and X-coordinates (remember, Y is listed first in the file).  Since we've just started a new frame, and we haven't yet reached the section that checks for the four instruction codes (FA, FC, FD, or FE), we can assume that a frame is never allowed to start with an instruction code.  It must always start with a Y-coordinate.

0590 DATLOAD

0600  LDA (DATPT0),Y; LOAD DATA

0610  INC DATPT0

0620  BNE SAMEBYTE

0630  INC DATPT1

0640 SAMEBYTE RTS; BACK TO MAIN LOOP

This is the DATLOAD subroutine.  It is a real subroutine (not just a short section like NEWDRAW) because it has an RTS instruction at the end.  Our data pointer (DATPT0, DATPT1) was loaded with the starting address of the animation data, back in line 1110 of the BASIC program.  Here in line 600, the next byte of data is loaded into the accumulator.  The Y-register in this case is not used as the low-byte data pointer, since that would interfere with its use in other areas (such as the clearing routine).  The register was left at zero at the end of the clearing routine, so it won't be initialized here, which saves a couple of bytes. (Might be a bad programming practice, but I'm hurting for memory space).  Anyway, DATPT0 is incremented (and DATPT1 if necessary) and we return to the main loop...

0870 ;

0880 DLOOP

0890 ;  YCODE ROUTINE

0900  JSR DATLOAD

0910  CMP #253: FD

0920  BEQ NEWDRAW

0930  CMP #252; FC

0940  BEQ FRAMEDONE;  BACK TO BASIC

0950  CMP #254; FE

0960  BEQ EXTEND

0970  CMP #250; FA

0980  BEQ RESTART

0990  STA Y2

1000  JSR DATLOAD

1010  STA X2

We've previously stored the first pair of line coordinates (X1, Y1).  Now we're going to pull the next data byte and determine whether it's a control code or a Y-coordinate.  If the byte is FD (Finished Drawing), we'll go back to NEWDRAW (where we were before) to get a new set of X1,Y1 coordinates.  Since currently this is only the third byte read we've read, it should be evident that it's useless to have just two coordinates followed by an FD code (nothing is drawn).  Lines 930 and 940 send control back to BASIC if an FC (Frame Completed) coded is encountered.  Again, we wouldn't expect that now, since this is only our third byte of data.  Lines 950 and 960 detect an FE code (Frame Extended) as send us to the EXTEND subroutine:

0660 EXTEND

0670  JSR DATLOAD

0680  STA XTND

0690  RTS; BACK TO BASIC


EXTEND is NOT a subroutine!  The RTS at the end returns us back to BASIC to display the frame (just like FC).  Before we go, though, the next byte of animation data is loaded.  The byte after FE is the number of frame-durations to delay the current frame (for the Atari player, 20ths of a second).  We call this byte XTND, and it gets stored in location 230 ($E6) to be pulled out by the BASIC program in line 1230 or 1320, as we covered earlier.  Okay, let's get back to what we were doing before:

0970  CMP #250; FA

0980  BEQ RESTART


If our byte is FA, we jump to the RESTART subroutine:

0710 RESTART

0720  LDA BASE0

0730  STA DATPT0

0740  LDA BASE1

0750  STA DATPT1

0760 ;

0770 FRAMEDONE RTS; BACK TO BASIC


Our pointers to the animation data, DATPT0 and DATPT1, are set back to the start of the file (BASE0 and BASE1) and we jump back to BASIC to display the last frame and start the animation over.

0990  STA Y2

1000  JSR DATLOAD

1010  STA X2

These last three lines execute if our byte is not a control code (so it must be a Y-coordinate).  It is stored as the Y2, and the next byte is retrieved and stored as X2.  Now we have (X1,Y1) and (X2,Y2) and we're ready to draw a line... 

LINE DRAWING

This next section is the nuts-and-bolts of our line drawing, and things will get a bit more "hairy".  All the organizing and setup is done, and now I'll show you how I:

1) Turn the X- and Y- coordinates into actual GRAPHICS 22 pixel locations

2) Select one of 8 line-drawing routines which use Bresenham's algorithm, a great little method which is perfectly suited to 8-bit machine language.

3) Execute the appropriate routine and "light the pixels" to create a straight line.

4) Return control back to FRAME.BIN, so that it can continue to the next line.

Okay, here we go.  This is the next section of FRAME.BIN:

1020 ;

1030 ; FIND THE PIXEL LOCATION

1040 ;

1050 ;  CALCULATE PIXZ USING TABLE

1060  LDA X1

1070  AND #7

1080  TAX

1090  LDA $6F8,X

1100  STA PIXZ

Back when we were discussing lines 510-570 of the BASIC program, we created a little table with the values 128, 64, 32, etc. which would be used to determine which pixel to light from the row of 8 pixels associated with each byte of screen memory.  Lines 1050 through 1110 above use our first X-coordinate (X1) to determine which value of the table will to light the first pixel.  On lines 1060 and 1070, X1 is ANDed with 7 (00000111) to strip off everything but the last 3 binary digits.  We then have a number 0 thru 7, which can be loaded into the X-register and used as an offset to find the correct value from the table.  We call this value PIXZ, and it's the byte that will be anded with the contents of the correct memory location in order to light the pixel.  Now let's find that memory location.

1110 ;  FIND THE ROW (Y-COORD X 20)

1120  LDA Y1

1130  LSR A

1140  LSR A

1150  LSR A

1160  LSR A

1170  STA PIXHI

1180  LSR A

1190  LSR A

1200  STA YX4HI

1210  LDA Y1

1220  ASL A

1230  ASL A

1240  STA YX4LO

1250  ASL A

1260  ASL A

1270  CLC

1280  ADC YX4LO

1290  STA PIXLO

1300  LDA PIXHI

1310  ADC YX4HI

1320  STA PIXHI


Finding the 2-byte pixel location means multiplying Y1 by 20 (since there are 20 memory bytes for each row) and dividing  X1 by 8 (8 pixels per byte) and then adding the two totals.  This will be an offset.  The final location will be found by adding this offset to the start of screen memory found in locations 88 and 89 ($58 and $59).


The 21 instructions in the section above (lines 1120 through 1320) are JUST to multiply Y1 by 20!  It may be a little hard to follow, but I've found that this sequence of instructions is the fastest way to execute the multiplication.  We will multiply Y1 by 16 and then multiply it by 4 and then add the two numbers together.  Remember, Y1 is 2 bytes that are treated as a single number (16 bits).  


Here we go.  Multiplying Y1 by 16 is like shifting its 16 bits to the left 4 times.  The 4 highest bits of the low byte are moved into the high byte.  Lines 1120 thru 1170 perform an equivalent operation by shifting Y1 to the RIGHT 4 times and storing the result in the high byte (PIXHI).  Lines 1180 thru 1200 shift this number to the right 2 more times and store it as YX4HI.  This is the high byte of Y1 times 4, which will be added in later.  


Lines 1210 thru 1240 reload Y1 and shift its bits to the LEFT 2 times, multiplying it by 4.  This number is stored in YX4LO.  We're not worried about losing digits to the left, since we've already taken care of the high-byte digits.  In lines 1250 and 1260 we again shift left 2 times, leaving the low byte of Y1 times 16 in the accumulator.  In line 1270 the carry bit is cleared (in case it was set by our left-shifts) so that it's doesn't mess up the addition that follows.  YX4LO is added to the accumulator and the final result is stored in PIXLO.  If this addition sets the carry bit, then it is used in the next addition between PIXHI and XY4HI.  PIXHI is then stored on line 1320.  The two-byte number PIXHI, PIXLO is Y1 multiplied by 20.

1330 ;  FIND THE BYTE (X-COORD / 8)

1340  LDA X1

1350  LSR A

1360  LSR A

1370  LSR A

1380  CLC

1390  ADC PIXLO

1400  STA PIXLO

1410  BCC NOCARRY

1420  INC PIXHI

1430 NOCARRY CLC

1440  LDA $58

1450  ADC PIXLO

1460  STA PIXLO

1470  LDA $59

1480  ADC PIXHI

1490  STA PIXHI 


This section simply divides X1 by 8 (much easier than multiplying by 20), and adds it to PIXLO, performing the carry to PIXHI if necessary.  This creates the PIXLO, PIXHI offset.  This number is then added to the start of screen memory ($58, $59) with any carry automatically calculated.  The final PIXLO, PIXHI result is the memory location of the pixel to be lit.


We finally have the byte identified.  However, the pixel won't actually be lit until we get to one of the line-drawing routines. 

1500 ;

1510 ;    SELECT A LINE ROUTINE

1520  LDX #0

1530  LDA X2

1540  SEC

1550  SBC X1

1560  BCS RIGHT

1570 ;

1580  LDX #4

1590  LDA X1

1600  SEC

1610  SBC X2

1620 RIGHT STA DX

1630 ;

1640  LDA Y2

1650  SEC

1660  SBC Y1

1670  BCS DOWN

1680 ;

1690  INX

1700  INX

1710  LDA Y1

1720  SEC

1730  SBC Y2

1740 DOWN STA DY

1750 ;

1760  LDA DX

1770  SEC

1780  SBC DY

1790  BCS GENTLE

1800  INX

1810 GENTLE TXA

1820  ASL A; MULTIPLY BY 2

1830  TAX

1840  LDA $6E8,X

1850  STA JUMP0

1860  LDA $6E9,X

1870  STA JUMP1


The section above is a long one, but I think it should be analyzed all in one piece.  It selects 1 of the 8 line-drawing routines, based on the X1,Y1 and X2,Y2 coordinates we have for the line.  Early on in this document, we defined the 8 routines:  

Right Down Gentle (RDG) - DX and DY both pos, DX > DY

Right Down Steep (RDS) - DX and DY both pos, DY > DX

Right Up Gentle (RUG) - DX positive and DY neg, DX > |DY|

Right Up Steep (RUS) - DX positive and DY neg, |DY| > DX

Left Down Gentle (LDG) - DX negative and DY positive, |DX| > DY

Left Down Steep (LDS) - DX negative and DY positive, DY > |DX|

Left Up Gentle (LUG) - DX and DY both negative, |DX| > |DY|

Left Up Steep (LUS) - DX and DY both negative, |DY| > |DX|


In lines 440 thru 500 of our BASIC program, we had set up a table, starting at location 1768 ($6E8), of the starting memory addresses of the routines.  For example, the memory address stored in $6E9, $6E8 is the starting address of RDG, the memory address in $6EB, $6EA is the starting address of RDS, etc.  The SELECT section that we are now analyzing will use that table to create a 0-7 offset.  This will then be doubled so that it can be added to $6E8 and $6E9 to locate the appropriate routine.  We will treat the offset like a 3-bit number (000 to 111).  It will start at 000, and we will add a one (like a flag) at one of the three positions if certain conditions are met.  Here are the conditions:

If DX (X2 minus X1) is negative, add 100 (4) to the offset.

The line is being drawn LEFT (right-to-left)

If DY (Y2 minus Y1) is negative, add 010 (2) to the offset.

The line is being drawn UP (remember, Y-coords increase going down)

If  |DX| minus |DY| is negative (the abs. value of DX is less than the abs. value of DY), add 001 (1) to the offset.

The line is STEEP (rather than GENTLE)

You can see that the above conditions will give the 8 cases the following offsets:

RDG - 000  RDS - 001  RUG - 010  RUS - 011

LDG - 100  LDS - 101  LUG - 110  LUS - 111

Now that I've explained all that, it should be pretty quick to work through the listing.  The first piece:

1500 ;

1510 ;    SELECT A LINE ROUTINE

1520  LDX #0

1530  LDA X2

1540  SEC

1550  SBC X1

1560  BCS RIGHT

1570 ;

1580  LDX #4

1590  LDA X1

1600  SEC

1610  SBC X2

1620 RIGHT STA DX


We'll use the X-register to keep track of our offset.  Line 1520 initializes it to zero.  Lines 1530 through 1560 subtract X1 from X2 and if the result is positive (X2 is greater than X1, carry flag is unchanged), then we know the line is drawn to the RIGHT and we branch to line 1620, which stores the result of the subtraction as DX.  If the result of our subtraction is negative, we store 4 in the X-register on line 1580.  We then subtract the other way (X1 minus X2) to get a positive result, and store that as DX on line 1620.  Okay, now we'll check the next condition (UP-DOWN):

1630 ;

1640  LDA Y2

1650  SEC

1660  SBC Y1

1670  BCS DOWN

1680 ;

1690  INX

1700  INX

1710  LDA Y1

1720  SEC

1730  SBC Y2

1740 DOWN STA DY


In this section we first subtract Y1 from Y2, and if the result is positive, we skip down to line 1740 and save the result as DY.  If the result is negative, 2 is added to the X-register (with 2 "increment X" instructions) and then subtraction is reversed, and the positive result is saved as DY.


Okay, now the STEEP-GENTLE section:

1750 ;

1760  LDA DX

1770  SEC

1780  SBC DY

1790  BCS GENTLE

1800  INX

1810 GENTLE TXA

1820  ASL A; MULTIPLY BY 2

1830  TAX

1840  LDA $6E8,X

1850  STA JUMP0

1860  LDA $6E9,X

1870  STA JUMP1

1880 ;

1890 ; JUMP TO 1 OF 8 LINE ROUTINES

1900 ; (CHAR STRINGS IN BASIC)

1910 ;

1920  JMP(JUMP0)   

1930 ;


DY is compared to DX, and if DY is bigger (STEEP), the X-register is increased by one.  Now the X-register has the complete 0-7 offset.  On lines 1810 thru 1830 that value is doubled, so that it can be used to offset both low and high memory locations.  On lines 1840 thru 1870,  these two locations are accessed, and the bytes are stored as JUMP0 and JUMP1.  On line 1920, we indirectly jump to the address in JUMP1, JUMP0. which is the start of one of the 8 line-drawing routines.  The routine executes, and at the end is an indirect jump to the memory address stored in locations  BACK0 and BACK1 ($3F and $40).  This memory address is $6DC.  Remember, we stored $6DC (1756) in locations $3F and $40 (63 and 64) back in lines 610 through 630 of the BASIC program.  Anyway, program control returns to address $6DC, which is the LDA #0 instruction in the following final section of FRAME.BIN:

1940 ;RETURN FROM LINE ROUTINES($6DC)

1950 ;AND

1960 ;UPDATE ENDPOINTS FOR NEXT DRAW

1970  LDA Y2

1980  STA Y1

1990  LDA X2

2000  STA X1

2010 ;

2020  JMP DLOOP


Lines 1970 thru 2000 save the new coordinates (X2,Y2) as old coordinates (X1,Y1) so that they will now be the starting coordinates when a new line is drawn (remember, the program draws "polylines" until it's told to stop by a code byte).  Line 2020 jumps back up to DLOOP to pull the next byte, check if it's a code byte, and go through the whole cycle again...


This completes are examination of WHAM.CTB and FRAME.BIN.  The only thing left to examine are the line-drawing routines, which are stored in WHAM.CTB as character strings.  We'll examine just the first one, RDG (Right-Down-Gentle) because they are all very similar.  We'll examine the routine in its assembly language listing, before it was assembled and turned into a character string.

Bresenham's Line Algorithm
Before we look at the listing, though, we have to discuss the classic algorithm that makes the routines work, Bresenham's Line Algorithm.  Discovered (invented?) in 1962 by Jack Bresenham of IBM to control plotters, it is (I believe) the de facto standard algorithm for line-drawing in hardware, or in software when using only integer math (as we are).  The routine is very simple, taken from "Principles Of Interactive Computer Graphics", page 26.  I've used a slight variation:

E = DY - DX / 2

FOR J = 0 TO DX

   PLOT (X,Y)

   IF E > 0 THEN


E = E + DY - DX 


Y = Y + 1



END IF

   ELSE E = E + DY


END IF

    X = X + 1

NEXT J

END


The algorithm is shown above for the basic limited case where DX > DY and both are positive (RDG in our routines).  Graphically it would be a slope between 0 and 1 (angle between 0 and 45 degrees).  The algorithm plots points which always increase one unit in the X-direction, but may or may not increase in the Y-direction.  For each new point, whether the Y value increases by 1 or by 0 is determined by whether the error term (E) is greater than 0.  E is then modified before the next plot, and E will swing back and forth between positive and negative values during the course of plotting the line.    


We see that we can simplify things, since DY is always added to E, whether or not E > 0.  So we'll move E = E + DY up above the IF - THEN statement. In addition, we can simplify the initial condition E = DY - DX / 2 to E = - DX / 2, since DY is already going to be added after the first PLOT.  This gives us:  

E = - DX / 2
FOR J = 0 TO DX

   PLOT (X,Y)

   E = E + DY
   IF E > 0 THEN


E = E - DX


Y = Y + 1


END IF   

    X = X + 1

NEXT J

END


Since machine language can't use multiple instructions in an "IF - THEN" branch, it will be advantageous to change "E >" to "E <" and express the routine in BASIC format: 

10 E = -DX / 2

20 FOR J = 0 TO DX

30    PLOT (X,Y)

40    E = E + DY
50    IF E < 0 THEN 80
60    E = E - DX

70    Y = Y + 1

80    X = X + 1

90 NEXT J

100 END


In the above program (as mentioned earlier), E will swing back and forth between positive and negative values.  I decided to find out how much of a swing it actually was, so I ran the above BASIC program for the two worst cases, DX=159, DY=1 and DX=159, DY=95.  I found that E ranges from -159 to 94.  This is a range of 254 values, which, lucky for us, will fit into one byte.  Unfortunately, we still have the problem of dealing with negative and positive numbers in a single byte, and I've found from experience that it's very difficult to do proper conditional branching if the polarity of the number is unclear.  The value -159, for example, is too low to define E as a signed one-byte number (must be -128 to 127).  There must be a better way.  Since we can add any constant to E, as long as we add it to both the initial condition and the comparison value, what if we add DX to both?  Our routine becomes:    

10 E = DX / 2
20 FOR J = 0 TO DX

30    PLOT (X,Y)

40    E = E + DY
50    IF E < DX THEN 80
60    E = E - DX

70    Y = Y + 1

80    X = X + 1

90 NEXT J

100 END


Running this program yields E values from 0 to 253.  Perfect!  We no longer have to worry about comparing negative values.


Now we're ready to look at one of the actual routines.  Here is the most basic routine, RDG:

10 ;RDG.SRC (RUN FROM ML)

20 ;DRAW RIGHT-DOWN-GENTLE

30 ;DX AND DY BOTH POS

40 ;AND DX > DY

50 ;

60 ;MY OWN EQUATES

70 E=$CF

80 DX=$D0

90 DY=$D1

100 PIXZ=$DB

110 PIXLO=$DC

120 PIXHI=$DD

130 BACK=$3F

140  *=$600


This first section merely specifies the variables and the starting location of the program when it was assembled ($600).  That starting location will be different once the routine is converted to a character string and inserted into the BASIC program.

150  LDA DX

160  TAX

170  INX

180  LSR A

190  STA E; E=DX/2

200  LDY #0


In lines 150-170, DX is put into the X-register to use as our counter (like FOR J = 0 TO DX).  The X-register is then incremented by one (INX) to allow for the fact that all the PLOTs occur before the X-register reaches zero.  Lines 180 and 190 store DX / 2 as E.  Line 200 initializes the Y-register so that it won't interfere with our pixel operations coming up.

210 LOOP LDA PIXZ

220  ORA (PIXLO),Y; OR WITH LOC

230  STA (PIXLO),Y; LIGHT THE PIXEL


Here's where we (FINALLY) do the plotting and light the pixels.  For the first point in the line, PIXZ is already loaded with the proper value to light the correct pixel in the group of 8.  For example, to light the third pixel (from the left) in the group, PIXZ would be 00100000, or 32 ($20).  In line 220, PIXZ is OR'ed with the number in location PIXHI,PIXLO (OR'ed so that no existing lighted pixels are erased) and in line 230 the result is stored back in PIXHI,PIXLO.

240  LDA E

250  CLC

260  ADC DY

270  STA E; E=E+DY


In lines 240 through 270, DY is added to E.

280  SEC

290  SBC DX; IF E<DX, FLAT

300  BCC INCXPIXEL

310  STA E; E=E-DX


In lines 280 through 300, the E < DX comparison is done.  First the carry flag is set.  Then DX is subtracted from E (which is already in the accumulator) and if the result is negative (E < DX), the carry flag will be cleared.  The BCC instruction will then take us to the INCXPIXEL section of the program.  If the carry flag remains set (E > DX) then subtraction result is stored in E (E = E - DX).

320 ;

330 INCYPIXEL CLC

340  LDA PIXLO

350  ADC #20

360  STA PIXLO

370  BCC INCXPIXEL

380  INC PIXHI


We get to the section above if E was > DX during the comparison.  It means that the Y-coordinate of the next pixel will be incremented by one.  That is what this section does.  Since GRAPHICS 22 has 160 pixels (or 20 bytes) per line, moving down a line (remember increasing Y takes us downward on the screen) is simply a matter of moving ahead 20 memory locations by adding 20 to the number PIXLO,PIXHI.  We add the number to PIXLO and if PIXLO goes over 256, we increment PIXHI by one.

390 ;

400 INCXPIXEL CLC

410  ROR PIXZ

420  BCC SAMEBYTE

430  ROR PIXZ

440  INC PIXLO

450  BNE SAMEBYTE

460  INC PIXHI


This section increments the X-coordinate of the next pixel.  It will occur every time we go around the loop.  Line 410 increments the X-coordinate by rotating the bits of PIXZ to the right.  The previous line clears the carry bit so that it can't accidently rotate a 1 into our PIXZ value.  What if PIXZ is 000000001?  A rotation to the right will cause the 1 to rotate into the carry bit.  If that's the case, then on line 420, we won't branch down to SAMEBYTE.  Instead, we'll rotate PIZ again so the the 1 comes out on the left (10000000) and we'll increment PIXZ.  When the next point is plotted, it's X-coordinate will be the left-most bit in the byte just to the right (the next pixel to the right).

470 ;

480 SAMEBYTE DEX

490  BNE LOOP

500  JMP(BACK)


The final section.  We're at the end of the loop, so we decrease the X-register by one and if it's not zero (we've looped less than DX + 1 times) then we go back and plot another point.  If the X-register is zero, we're done with the line and we to an indirect jump to the memory location stored in memory location BACK ($40,$3F).  This location is $6DC (although it may change), the Page 6 address where we will continue with the FRAME.BIN routine.

The differences between RDG and the other  7 routines are fairly minor, simple changes like switching the roles of DX and DY in the calculations, using DECXPIXEL and DECYPIXEL instead of INCXPIXEL and INCYPIXEL, etc.  At this point I will leave it to the reader himself to investigate the differences.  However, in the case of the L-routines being 5 bytes longer than the R-routines, I feel I must explain.  Here is a comparison of sections of RDG and LDG: 

RDG




LDG
400 INCXPIXEL CLC

400 DECXPIXEL CLC

410  ROR PIXZ


410  ROL PIXZ

420  BCC SAMEBYTE

420  BCC SAMEBYTE

430  ROR PIXZ


430  ROL PIXZ

440  INC PIXLO


440  LDA PIXLO

450  BNE SAMEBYTE

450  SEC

460  INC PIXHI


460  SBC #1

470 ;




470  STA PIXLO

480 SAMEBYTE DEX

480  BCS SAMEBYTE






490  DEC PIXHI






500 ;






510 SAMEBYTE DEX


The DECXPIXEL section of LDG is 3 instructions (5 bytes) longer than the INCXPIXEL section of RDG.  Here's why.  In lines 400 to 430, the two routines rotate and test PIXZ in a similar way.  However, starting at line 440, RDG takes only 3 instructions to increment PIXLO, see if it reaches 256 (0) and if it does, increment PIXHI.  For LDG, the same approach won't work.  If we decremented PIXLO by 1 and then checked for zero, it would be too early for PIXHI to be decremented.  We'd need instead to check PIXLO against 255 (-1) and that would require bringing it into the accumulator to do the comparison.  What if we just decremented PIXLO and then used the BPL (Branch on PLus) instruction to branch to SAMEBYTE if PIXLO was positive or zero?  The problem with that is that the BPL instruction looks at the Negative Flag and branches if it's not set, and the Negative Flag is set on all results that are higher than 127.  So PIXHI would constantly get decremented, instead of only when PIXLO reaches -1.  


Anyway, what I've done instead is to simply pull PIXLO into the accumulator, subtract 1, and restore it.  Then the carry flag is checked and if it's still set (PIXLO did not go negative) then we don't decrement PIXHI.

We've now covered the player, WHAM12.BAS, including its character-string line-drawing routines, and FRAME.BIN, the frame-drawing routine which resides on Page 6 when the player is running.  Have fun!
Dave Coombs

Fair Oaks, CA

October 2009
FRAME.BIN Source Listing
80 ;FRAME.SRC

90 ;

0100 ;EQUATES

0110 X1=$CB;     203

0120 Y1=$CC;     204

0130 X2=$CD;     205

0140 Y2=$CE;     206

0150 TOP=$CF;    207

0160 DX=$D0;     208

0170 DY=$D1;     209

0180 PIXZ=$DB;   219

0190 PIXLO=$DC;  220

0200 PIXHI=$DD;  221

0210 YX4LO=$DE;  222

0220 YX4HI=$DF;  223

0230 JUMP0=$3D;   61

0240 JUMP1=$3E;   62

0250 BACK0=$3F;   63

0260 BACK1=$40;   64

0270 XTND=$E6;   230

0280 BASE0=$E7;  231

0290 BASE1=$E8;  232

0300 DATPT0=$E9; 233

0310 DATPT1=$EA; 234

0320 TIMER=$EB;  235

0330 ;

0340  *=$600

0350  PLA

0360  LDY #0

0370 ;

0380 ;  CLEAR THE SCREEN

0390  LDA 89

0400  STA PIXHI 

0410  CLC

0420  ADC #8

0430  STA TOP

0440  LDA 88

0450  STA PIXLO

0460 SLOOP LDA #0

0470 CLOOP STA (PIXLO),Y

0480  INY

0490  BNE CLOOP

0500  INC PIXHI

0510  LDA PIXHI

0520  CMP TOP

0530  BNE SLOOP

0540  JMP NEWDRAW

0550 ;

0560 ;          3 ROUTINES - 

0570 ;  DATLOAD, EXTEND, & RESTART

0580 ;

0590 DATLOAD

0600  LDA (DATPT0),Y; LOAD DATA

0610  INC DATPT0

0620  BNE SAMEBYTE

0630  INC DATPT1

0640 SAMEBYTE RTS; BACK TO MAIN LOOP

0650 ;

0660 EXTEND

0670  JSR DATLOAD

0680  STA XTND

0690  RTS; BACK TO BASIC

0700 ;

0710 RESTART

0720  LDA BASE0

0730  STA DATPT0

0740  LDA BASE1

0750  STA DATPT1

0760 ;

0770 FRAMEDONE RTS; BACK TO BASIC

0780 ;

0790 ;

0800 ; *** THE MAIN FRAME ROUTINE ***

0810 ;

0820 NEWDRAW

0830  JSR DATLOAD

0840  STA Y1

0850  JSR DATLOAD

0860  STA X1

0870 ;

0880 DLOOP

0890 ;  YCODE ROUTINE

0900  JSR DATLOAD

0910  CMP #253: FD

0920  BEQ NEWDRAW

0930  CMP #252; FC

0940  BEQ FRAMEDONE;  BACK TO BASIC

0950  CMP #254; FE

0960  BEQ EXTEND

0970  CMP #250; FA

0980  BEQ RESTART

0990  STA Y2

1000  JSR DATLOAD

1010  STA X2

1020 ;

1030 ; FIND THE PIXEL LOCATION

1040 ;

1050 ;  CALCULATE PIXZ USING TABLE

1060  LDA X1

1070  AND #7

1080  TAX

1090  LDA $6F8,X

1100  STA PIXZ

1110 ;  FIND THE ROW (Y-COORD X 20)

1120  LDA Y1

1130  LSR A

1140  LSR A

1150  LSR A

1160  LSR A

1170  STA PIXHI

1180  LSR A

1190  LSR A

1200  STA YX4HI

1210  LDA Y1

1220  ASL A

1230  ASL A

1240  STA YX4LO

1250  ASL A

1260  ASL A

1270  CLC

1280  ADC YX4LO

1290  STA PIXLO

1300  LDA PIXHI

1310  ADC YX4HI

1320  STA PIXHI

1330 ;  FIND THE BYTE (X-COORD / 8)

1340  LDA X1

1350  LSR A

1360  LSR A

1370  LSR A

1380  CLC

1390  ADC PIXLO

1400  STA PIXLO

1410  BCC NOCARRY

1420  INC PIXHI

1430 NOCARRY CLC

1440  LDA $58

1450  ADC PIXLO

1460  STA PIXLO

1470  LDA $59

1480  ADC PIXHI

1490  STA PIXHI

1500 ;

1510 ;    SELECT A LINE ROUTINE

1520  LDX #0

1530  LDA X2

1540  SEC

1550  SBC X1

1560  BCS RIGHT

1570 ;

1580  LDX #4

1590  LDA X1

1600  SEC

1610  SBC X2

1620 RIGHT STA DX

1630 ;

1640  LDA Y2

1650  SEC

1660  SBC Y1

1670  BCS DOWN

1680 ;

1690  INX

1700  INX

1710  LDA Y1

1720  SEC

1730  SBC Y2

1740 DOWN STA DY

1750 ;

1760  LDA DX

1770  SEC

1780  SBC DY

1790  BCS GENTLE

1800  INX

1810 GENTLE TXA

1820  ASL A; MULTIPLY BY 2

1830  TAX

1840  LDA $6E8,X

1850  STA JUMP0

1860  LDA $6E9,X

1870  STA JUMP1

1880 ;

1890 ; JUMP TO 1 OF 8 LINE ROUTINES

1900 ; (CHAR STRINGS IN BASIC)

1910 ;

1920  JMP(JUMP0)

1930 ;

1940 ;RETURN FROM LINE ROUTINES($6DC)

1950 ;AND

1960 ;UPDATE ENDPOINTS FOR NEXT DRAW

1970  LDA Y2

1980  STA Y1

1990  LDA X2

2000  STA X1

2010 ;

2020  JMP DLOOP
